A Simple Analytic Approximation for the Refracted Field at Gaussian Beam Incidence upon a Boundary of Absorbing Medium

نویسندگان

  • Vladimir M. Serdyuk
  • Joseph A. Titovitsky
چکیده

An approximate analytic model is presented to describe spatial structure of refracted electromagnetic field arising at oblique incidence of a Gaussian beam on a plane boundary of an absorbing homogeneous medium. The analytic solution is obtained by asymptotic approximation of a Fourier field integral under the condition of great beam width in comparison with a wavelength (the geometrical-optics approximation). This model can be used also for approximate simulation of refracted field in the cases of beam incidence near the critical angle on transparent or absorbing (amplifying) refracting medium, if one artificially introduces the additional absorption (amplification), whose value is proportional to the ratio of the wavelength and the effective beam width. It is shown that the analytic model reflects the general features of refracted field at total internal reflection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection and Transmission of Beams at a Dielectric Interface

When complex values are assigned to the source coordinates in the expressions for the fields radiated by a line or point source in a homogeneous medium, the resulting fields have the form of a two-or three-dimensional Gaussian beam. This fact may be utilized to develop results for beam propagation and scattering in inhomogeneous regions from corresponding results for point or line source fields...

متن کامل

ABCD matrix for reflection and refraction of laser beam at tilted concave and convex elliptic paraboloid interfaces and studying laser beam reflection from a tilted concave parabola of revolution

Studying Gaussian beam is a method to investigate laser beam propagation and ABCD matrix is a fast and simple method to simulate Gaussian beam propagation in different mediums. Of the ABCD matrices studied so far, reflection and refraction matrices at various surfaces have attracted a lot of researches. However in previous work the incident beam and the principle axis of surface are in parallel...

متن کامل

Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation

We consider the problem of constructing absorbing boundary conditions for the multi-dimensional wave equation. Here we work directly with a difference approximation to the equation, rather than first finding analytical boundary conditions and then discretizing the analytical conditions. This approach yields some simple and effective discrete conditions. These discrete conditions are consistent ...

متن کامل

Shear Waves Through Non Planar Interface Between Anisotropic Inhomogeneous and Visco-Elastic Half-Spaces

A problem of reflection and transmission of a plane shear wave incident at a corrugated interface between transversely isotropic inhomogeneous and visco-elastic half-spaces is investigated. Applying appropriate boundary conditions and using Rayleigh’s method of approximation expressions for reflection and transmission coefficients are obtained for the first and second order approximation of the...

متن کامل

Giant Goos-Häenchen Shift of a Gaussian Beam Reflected from One-Dimensional Photonic Crystals Containing Left-Handed Lossy Metamaterials

We perform a theoretical investigation on the Goos-Häenchen shift (the lateral shift) in one-dimensional photonic crystals (1DPCs) containing left-handed (LH) metamaterials. The effect was studied by use of a Gaussian beam. We show that the giant lateral displacement is due to the localization of the electromagnetic wave which can be both positive and negative depending on the incidence angle o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010